Lattice Points in Minkowski Sums

نویسندگان

  • Christian Haase
  • Benjamin Nill
  • Andreas Paffenholz
  • Francisco Santos
چکیده

Fakhruddin has proved that for two lattice polygons P and Q any lattice point in their Minkowski sum can be written as a sum of a lattice point in P and one in Q, provided P is smooth and the normal fan of P is a subdivision of the normal fan of Q. We give a shorter combinatorial proof of this fact that does not need the smoothness assumption on P .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Note on the Coefficients of Rational Ehrhart Quasi-polynomials of Minkowski-sums

By extending former results of Ehrhart, it was shown by Peter McMullen that the number of lattice points in the Minkowski-sum of dilated rational polytopes is a quasipolynomial function in the dilation factors. Here we take a closer look at the coefficients of these quasi-polynomials and show that they are piecewise polynomials themselves and that they are related to each other by a simple diff...

متن کامل

Spatial statistics for lattice points on the sphere I‎: ‎Individual results

‎We study the spatial distribution of point sets on the sphere obtained from the representation of a large integer as a sum of three integer squares‎. ‎We examine several statistics of these point sets‎, ‎such as the electrostatic potential‎, ‎Ripley's function‎, ‎the variance of the number of points in random spherical caps‎, ‎and the covering radius‎. ‎Some of the results are conditional on t...

متن کامل

On f-vectors of Minkowski additions of convex polytopes

The objective of this paper is to present two types of results on Minkowski sums of convex polytopes. The first is about a special class of polytopes we call perfectly centered and the combinatorial properties of the Minkowski sum with their own dual. In particular, we have a characterization of face lattice of the sum in terms of the face lattice of a given perfectly centered polytope. Exact f...

متن کامل

Lattice polytopes cut out by root systems and the Koszul property

We show that lattice polytopes cut out by root systems of classical type are normal and Koszul, generalizing a well-known result of Bruns, Gubeladze, and Trung in type A. We prove similar results for Cayley sums of collections of polytopes whose Minkowski sums are cut out by root systems. The proofs are based on a combinatorial characterization of diagonally split toric varieties.

متن کامل

f-Vectors of Minkowski Additions of Convex Polytopes

The objective of this paper is to present two types of results on Minkowski sums of convex polytopes. The first is about a special class of polytopes called perfectly centered and the combinatorial properties of the Minkowski sum with their own dual. In particular, we have a characterization of faces of the sum in terms of the face lattice of a given perfectly centered polytope. Exact face coun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2008